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a nonrepairable DFT but are also applicable for a repairable DFT. 
However, Markov chain state space methods are vulnerable to state 
space explosion when analyzing large-scale DFTs, In addition, Mark-
ov chain-based methods require the components’ time-to-failure to 
follow exponent distributions. By contrast, combinatorial approaches 
(such as inclusion exclusion principle (IEP) methods [19], sequential 
binary decision diagram (SBDD) methods [30, 31], improved SBDD 
methods [11], dynamic binary decision tree (DBDT) methods [13], 
and adapted K.D.Heidtmann methods [12]) are seldom trapped into 
state space explosion and often more efficient than the Markov chain 
methods. Nevertheless, most existing combinatorial approaches are 
limited in solving nonrepairable DFTs. It is worth noting that some 
researchers have tried to develop a kind of combinatorial method to 
solve a repairable DFT with PAND gates under a steady state [33]. 
Hence, for a repairable DFT, combinatorial approaches need to be 
further studied and improved.

Numerical simulation analyzing techniques are also commonly 
used to deal with DFTs, such as Monte Carlo (MC) numerical simula-
tion [4, 5, 27]. Compared with the analytical approaches, numerical 
simulation methods can either provide great generalities on a DFT 
structure and failure distribution of their input events or reduce the 

1. Introduction 
Dynamic fault trees are extended from the traditional static fault 

trees (SFTs) by integrating several dynamic logic gates, such as Warm 
Spare (WSP) gate, Priority AND (PAND) gate, and Function Depend-
ent (PDEP) gate. With the help of integrating these dynamic gates, 
DFTs can model industrial systems with sequential failure behaviors 
that are not permitted in SFTs. Currently, dynamic fault trees are suc-
cessfully applied to system safety design, reliability evaluation, and 
risk management [14, 26, 32]. During the past few years, researchers 
have done much work in this field, making fruitful achievements [6, 
16, 18]. However, it is not easy to quantify a repairable DFT when 
applying the Markov chain state space method, because the executive 
process is time consuming and error prone, especially for a large-scale 
repairable DFT.

The primary analyzing techniques for quantifying a DFT are di-
vided into three main categories: Markov chain state space methods 
[1, 7, 24, 29], combinatorial methods [21, 23, 31, 34], and numeri-
cal simulation methods [8, 25, 35]. Markov chain-based and com-
binatorial approaches are analytical methods that can provide exact 
solutions. Markov chain-based methods are not only applicable for 
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Dynamic fault trees are important tools for modeling systems with sequence failure behav-
iors. The Markov chain state space method is the only analytical approach for a repairable 
dynamic fault tree (DFT). However, this method suffers from state space explosion, and 
is not suitable for analyzing a large scale repairable DFT. Furthermore, the Markov chain 
state space method requires the components’ time-to-failure to follow exponential distribu-
tions, which limits its application. In this study, motivated to efficiently analyze a repairable 
DFT, a Monte Carlo simulation method based on the coupling of minimal cut sequence 
set (MCSS) and its sequential failure region (SFR) is proposed. To validate the proposed 
method, a numerical case was studied. The results demonstrated that our proposed approach 
was more efficient than other methods and applicable for repairable DFTs with arbitrary 
time-to-failure distributed components. In contrast to the Markov chain state space method, 
the proposed method is straightforward, simple and efficient.
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scale of the problem to be handled. Generally, simulation methods are 
more versatile than analytical approaches, especially for probability 
density functions (PDFs) of input events’ time-to-failure, which are 
quite complex and lack explicit primitive functions. Rao KD et al. 
ever applied the Monte Carlo simulation technique to analyze repair-
able DFTs based on failure logics of various dynamic logic gates [25], 
and calculated the reliability index (i.e., unavailability) of a given 
system. However, the state of a DFT’s top event could not be de-
termined until all dynamic gates’ logic states were simulated, which 
meant more simulating time might be needed due to the redundant 
logic terms. Zhang P et al. then used a similar Monte Carlo simu-
lation technique to evaluate the reliability of a Phasor Measurement 
Unit [35]. Ge D et al. ever proposed a Monte Carlo simulation ap-
proach based on the coupling of DFTs’ minimal cut sequence set and 
sequence failure regions (SFR) to analyze a nonrepairable DFT, but 
this method was not extended to repairable DFTs [10]. Merle G et al. 
developed a Monte Carlo simulation method based on DFTs’ structure 
functions, but this method is only applicable for nonrepairable DFTs 
[22]. DFTsim [3] and MatCarloRE [20] are two analyzing tools for 
DFTs, and both tools use Monte Carlo simulation for solving DFTs, 
but do not allow repairable basic events. Recently, Gascard E et al. 
proposed an event-driven Monte Carlo simulation approach for quan-
titative analysis of DFTs [9], but the authors also assumed that the 
basic events are nonrepairable.

As mentioned above, for repairable DFTs, the accessible analyzing 
tools are Markov chain state space-based methods and dynamic logic 
gates-based Monte Carlo numerical simulation methods. For a large-
scale repairable DFT, the feasible methods are Monte Carlo numerical 
simulation approaches. However, the existing Monte Carlo numerical 
simulation methods for repairable DFTs are dependent on dynamic 
logic gates’ failure logics, which means more simulation time might 
be needed due to redundant logic terms. In this study, an MCSS-based 
Monte Carlo simulation method that couples the DFTs’ minimal 
cut sequence set (MCSS) and sequence failure regions is proposed, 
which can be the main research contribution. Compared with existing 
methods, the merits of our proposed method are: 1) in contrast to the 
Markov chain state space method, the proposed numerical simulation 
method is versatile and not limited to particular distribution types; 2) 
it can provide more reliability indices for a concerned system, such as 
uncertainty of system reliability and component importance; and 3) 
by comparison with dynamic logic gates-based numerical simulation 
methods, the proposed method can reduce the unnecessary redundant 
logic terms based on minimal cut sequence set and hence improve 
computing efficiency.

The remainder of this paper is organized as follows. The concepts 
of dynamic logic gates and repairable DFTs are clarified in section 
2. In section 3, the proposed MCSS-based Monte Carlo numerical 
simulation method is provided. Numerical case study is chosen and 
implemented to demonstrate the reasonability of the proposed method 
in section 4. Section 5 is devoted to the final conclusion.

2. Dynamic fault trees

2.1. Dynamic logic gates and repairable dynamic fault trees
To capture the sequence failure behaviors in the industrial sys-

tems, researchers have developed several dynamic logic gates such as 
Function Dependent (FDEP) gates, Priority AND (PAND) gates, Se-
quence Enforcing (SEQ) gates, and spare gates including Cold Spare 
(CSP) gates, Warm Spare (WSP) gates, and Hot Spare (HSP) gates, 
as shown in Fig. 1. A FDEP gate (Fig. 1 (a)) has a single trigger event 
(basic event or the output of another gate) and several dependent ba-
sic events. It characterizes a situation where the failure of the trigger 
event would cause all dependent basic events to fail, yet failure of any 
dependent basic event does not have effects on the trigger event. The 
PAND gate in Fig. 1 (b) is a special case of the AND gate. The PAND 
gate fires if its input events fail in a left-to-right order. A SEQ gate 

(Fig.1 (c)) has only one failure order (i.e., from left to right), and only 
when all the input events fail can the SEQ gate occur. For a spare gate, 
it often has one primary event and some spare events. Only when the 
primary event fails can spare events start to replace the primary one. 
As all input events under a spare gate lose, the spare gate fires. Spe-
cifically, the CSP gate in Fig. 1 (d) allows modeling of the case where 
cold spares always stay at an unpowered state when the primary event 
functions. This means the primary event, e1, must fail first; then the 
first cold spare e2 fails; and finally the last one en fails. The WSP in 
Fig. 1 (e) is unlike CSP gates, the spares stay at a reduced power when 
the primary event is normal. That is, the input events under a WSP can 
fail in any sequence. With regard to the HSP in Fig. 1 (f), the spares 
stay at full power when the primary event operates normally. Hence, 
the failure logic for an HSP is equivalent to the AND gate.

Fig. 1. Dynamic logic gates

To evaluate the reliability of systems with sequential failure be-
haviors, DFTs are proposed and developed. DFTs are defined by re-
searchers as static fault trees integrating at least one dynamic logic 
gate. According to input events, regardless of whether or not they 
have reparability behaviors, DFTs can be classified into two catego-
ries: nonrepairable and repairable DFTs. A non-repairable DFT is 
defined as a DFT whose input events do not have any reparability 
behavior. A repairable DFT is defined as having input basic events 
with reparability behaviors.

2.2. Failure logic expressions of a repairable DFT
As mentioned above, the occurrence of a DFT’s top event not only 

depends on combinations of its basic events but also depends on their 
failing orders. Therefore, the minimal cut set used to express failure 
behaviors in traditional static fault trees is not available. To settle this 
problem, Tang et al. developed the concept of minimal cut sequence 
for DFT analysis [28]. The minimal cut sequence (MCS) is defined 
as the minimal failure order that leads to occurrence of the top event 
of a DFT, and all the minimal cut sequences can form a universal set 
(i.e., minimal cut sequence set (MCSS)). The MCSS can be applied 
to capture the complete failure information in a DFT. In this contribu-
tion, MCSS is applied to characterize the failure logic expressions 
(FLE) of a DFT. Suppose a DFT has a MCSS with m minimal cut 
sequences, then the failure logic expression FLEdft of this DFT can 
be written as:

 1 2dft mFLE MCS MCS MCS= + + +

 (1)

To explicitly formulate an MCS, some special symbols are intro-
duced. We use the symbol “→” to represent sequential failure, which 
means the left basic event fails before the right one. It is defined as:
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where σ ⋅( )  
represents the state of a considered basic event or a se-

quential failure event, “1” denotes the failure state, “0” denotes the 
normal state, t(a) and t(b) indicates the failure time of a and b, and T 
is the mission time.

It should be noted that the symbol “→” just reflects the order of 
time-to-failure of the components represented by basic events. In fact, 
the start times of some components are also sequence dependent, such 
as cold spares, warm spares, and even the basic events under a SEQ 
gate. To characterize the sequence of the start time of some compo-
nents, in this work, the special symbols A, 0

 A B , A Bβ , and 1 A B  are also 
introduced, where A denotes a general basic event, 0

A B  represents B is 
a cold spare of A or any one of the second and subsequent input events 
under a SEQ gate, A Bβ  indicates B as a warm spare of A that fails 
before A, β  is the a dormant factor (0 < <β 1 ), and 1

A B  expresses 
B as a warm spare of A that fails after A at full power. Therefore, 
the minimal cut sequences of dynamic gates, each having two input 
events, can be written as: FLEfdep = eT + e1, FLEpand = e1→e2, FLEseq 
= e1→

1
0

2ee , FLEcsp = e1→
1
0

2ee , FLEwsp = e1 2 1
β e e→( ) + (e1→

1
1

2e )e , 
 FLEhsp = e1 ⋅ e2 = e1→e2 + e2→e1, where the symbol “+” means the 
logical operator OR and “+” means the logical operator AND. The 
failure logic of the FDEP gate is equal to the OR gate, and the HSP 
gate is equivalent to an AND gate. In addition, the SEQ and CSP gates 
have similar failure behaviors. The only differences lie in the fact that 
input events under a SEQ can be an event representing a system, and 
the input events under a CSP are constrained to basic events repre-
senting components. For a DFT, the MCSS is unique regardless of 
whether its input events have reparability.

2.3. Logic operation rules in a repairable DFT
To obtain the FLE of a DFT, several logic operation rules are de-

veloped and applied. Liu et al. developed a set of inference rules to 
obtain the FLE of a given DFT, and Merle et al. presented several 
logic operation rules to deduce a DFT’s structure function. In con-
trast to Merle’s methods, Liu’s inference rules are straightforward and 
simple [17]. In our approach, Liu’s inference rules were introduced 
to obtain the FLE of a DFT. The detailed fundamental inference rules 
are listed as follows:

(A→B) →C   A→B→C (3)

A→ (B→C )   A→B→C+ B→A→C (4)

A→ (B+C) ∙ A→B+ A→C (5)

(A+B) →C ∙ A→C+ B→ C (6)

(A→ A) A

(7)

A→ B→ A ⟹ Φ (8)

A ∙ B   A→B+ B→A (9)

where “ ”represents that the left are the necessary and sufficient 
conditions for the right, “⟹” means that the left are sufficient but 
not necessary conditions for the right, and “Φ” denotes an empty set. 
Based on these fundamental inference rules, ten additional deductive 
inference rules are also offered. Interested readers are encouraged to 
consult reference 17. Through applying these inference rules, we can 
obtain the FLE of a repairable DFT.

3. The proposed numerical simulation method

3.1. Adapted sequence failure region and its formulation for 
a repairable DFT

The sequence failure region concept has been proposed in our pre-
vious contributions [8] and has already been used to analyze the reli-
ability of a nonrepairable DFT. However, in a repairable DFT, the 
sequence failure regions are even more complex due to reparability 
behaviors. When a nonrepairable component enters a failure state, it 
never recovers again. However, for a repairable component, success-
ful and failed states appear alternatively due to reparability. Its run-
ning state diagram is shown in Fig. 2, where Ti is the running time 
(i.e., time to failure), Oi is the repair time (i.e., time to recovery) and 
i = 1, 2, k. Hence, the sequence failure regions of repairable DFTs are 
different from those of nonrepairable ones.

The time to failure Ti and time to recovery Oi can be obtained by 
the following equations:

 
T F

O G
i

i

= ( )
= ( )







−

−

1

1

ε

η
 (10)

where the F(x) and G(x) are Cumulative Distribution Functions(CDFs) 
of Ti and Oi , F-1(x) and G-1(x) are the corresponding inverse functions. 

 ε and ( ) 0,1 η ∈  are uniformly distributed random numbers gener-
ated by standard random generators. For example, suppose a compo-
nent follows exponent time-to-failure distribution with parameter λ, 
and its probability density function f(x) and cumulative probability 
distribution function F(x) are obtained as follows:

 f x e x( ) = ⋅ − ⋅λ λ  (11)

 F x f x dx e
x

x( ) = ( ) = −∫ − ⋅

0
1 λ  (12)

Then, the x formulated as a function of F(x) is obtained as:

Fig. 2. Running state diagram of a repairable component
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− ( )











1 1
1λ

 (13)

Let λ be 1.0 310−× /h, and the generated random number is 
0.5 which is used to replace the F(x). Through applying Eq. 
(13), the time-to-failure of the component is simulated as 693.1 
h. In the same way, we can get the time-to-recovery of the com-
ponent. Alternately, the component’s running state diagram can 
be derived.

A repairable DFT’s failure state is determined by its MCSS. 
According to the semantics of an MCS, its failure state should 
satisfy two requirements: 1) the time-to-failure of components 
must occur in a sequential order; and 2) under the conditions of 
1), all the components follow in a failure state at the common 
failure time interval. The sequential failure region of an MCS is 
demonstrated by a general minimal cut sequence e1→e2→

→en, which is shown in Fig. 3.
The variables ti,j , μi,j 

represent the jth time-to-failure and 
time-to-recovery of the ith component respectively. The vari-
ables Ti,j and Ui,j represent the jth failure time and recovery 
time located at the sequential failure region of the ith compo-
nent, respectively. As observed in Fig. 3, T1,1 = t1,1 + 1,1 µ + t1,2 

+ 1,2 µ + t1,3; T2,1 = t2,1 + 2,1  µ + t2,2 + 2,2  µ + t2,3; T3,1= t3,1  +

3,1  µ + t3,2; ; Tn,1 = tn,1  + ,1 nµ + tn,2 + ,2  nµ + tn,3, and T1,1

2,1 3,1 ,1nT T T< < < <  satisfying the sequence failure require-
ment, where the “+” is the notation of summation. Under this 
condition, the lower boundary of the failure time interval of 
this MCSS is Lsfr = Max{ T1,1, T2,1, T3,1,   , Tn,1}= Tn,1, and the upper 
boundary is Usfr = Min { U1,1, U2,1, U3,1,   , Un,1} = U3,1. There-
fore, the failure time interval (FTI) of this MCSS can be expressed as: 
FTIMCSS = ( Lsfr, Usfr)=(Tn,1, U3,1). Suppose a DFT has n minimal cut 
sequences (i.e., MCSS). Each MCSS has m failure time intervals, and 
the adapted sequence failure region (SFR) for this repairable DFT can 
be expressed as:

 ,1 1
n m

dft i ji jSFR FTI= ==
 

 (14)

In the simulation process, the obtained failure time intervals may 
have overlapping parts that may lead to a wrong reliability analysis 
result and should be merged and deleted. Four overlapping scenarios 

are identified (as shown in Fig. 4). The corresponding merging rules 
are provided for two overlapping failure time intervals (FTI1= (T11, 
T12), FTI2= (T21, T22)) in Table 1. For two overlapping failure time 
intervals, the boundaries of the merged FTI are the lower and upper 
times of the two FTIs.

3.2. Statistical formulas for reliability indices 
A system’s reliability indices are the indicators that can be ap-

plied to measure the degree of reliability. In a system reliability as-
sessment, the system indices primarily include 

MTBF, MTTR, availability and a component’s 
importance.

(1) MTBF, MTTR, Availability and Un-
availability indices

MTBF is defined as the mean working time 
between two failure scenarios, MTTR is defined 
as the mean repair time between two working 
periods, and Ti is defined as the mission time T 
(Ti = T). Based on the merged failure time in-
tervals, we can also obtain the working time in-
tervals as {[ 1,2

it , 2,1 it ], [ 2,2
it , 3,1 it ], [ 3,2

it , 4,1 it ],
  , [ 1,1i

i
mt − , ,1i

i
mt ]}. According to the obtained 

failure and working time intervals, the statistical 
indices of MTBF and MTTR can be expressed 
as:

 MTBF
t t

T
sf

i
N

j
m

j
i

j
i

i
N

i

i

=
−( )= =

=

∑ ∑
∑

1 1 2 1

1

, ,     (15)

Fig. 3. Sequence failure region of a general MCSS

Fig. 4. Four identified overlapping scenarios

Table 1. Merging rules for overlapping failure time intervals

No. Overlapping Conditions Merging Rules

Scenario 1 0≤T11≤T21; T21≤T12≤T22≤T* FTI1∪FTI2=( T11, T22)

Scenario 2 0≤T21≤T11≤T22; T22≤T12≤T* FTI1∪FTI2=( T21, T12)

Scenario 3 0≤T21≤T11; T12≤T22≤T* FTI1∪FTI2=( T21, T22)

Scenario 4 0≤T11≤T21; T22≤T12≤T* FTI1∪FTI2=( T11, T12)
* Mission time
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 MTTR
t t

T
sf

i
N

j
m
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 (16)

The availability of a system is a very important reliability index, 
and it not only reflects the safety of a system but also reflects its econ-
omy. Based on MTBF and MTTR, the statistical index of a system’s 
availability (Asf) and unavailability (UAsf) can be described as:

A
MTBF

MTBF MTTR

t t T
sf

sf

sf sf

i
N

j
m

j
i

j
i

i
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i

i

i

=
−
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�
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(17)
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(2) Importance index

The importance index of a component can be used to arrange it 
according to its decreasing or increasing order of importance. In our 
proposed method, a simulation-based importance index for a com-
ponent is introduced, namely, the failure criticality importance in-
dex (IFC) [15]. The fundamental idea of this concept is to divide the 
number of system failures caused by failure of component j with the 
failure number of the system in (0, t), and the statistical formula ,  FC

j sfI
is defined as:

 ,
1

jFC
j sf N

ii

n
I

m=

=
∑

 (19)

where  jn represents the number of system failures caused by the 
considered component j, the variable mi indicates the total number of 
system failures in the ith simulation round, and “caused” here means 
the final event that makes the system fail.

3.3. MCSS-based Monte Carlo numerical simulation meth-
odology

Based on the aforementioned statements, the proposed MCSS-
based Monte Carlo numerical simulation methodology can be imple-
mented as shown in Algorithm 1.
Algorithm 1.
Step 1. Apply Liu’s inference rules to obtain the MCSS of a DFT.
Step 2. Simulate the time-to-failure and time-to-recovery of each com-
ponent contained in MCSS.
Step 3. Merge the overlapping parts to obtain the FTI of the MCSS.
Step 4. Establish statistical formulas for reliability indices.
Step 5. Calculate the reliability indices based on the merged FTI of 
the MCSS.
Step 6. Output the simulated reliability results.

The detailed simulation procedure is provided as shown in Fig. 5.

4. Numerical validation
To illustrate the reasonability of the proposed MCSS-based Monte 

Carlo numerical simulation methodology, a DFT from an adapted hy-
pothetical cardiac assist system (HCAS) was chosen as a numerical 
validation case since it contained many kinds of dynamic gates [2]. 

4.1. Reliability evaluation
The original DFT model of HCAS is shown in Fig. 6. The reliabil-

ity parameters  iλ ,  iµ  were the failure and repair rates of the ith com-
ponent (ei) and were assumed to be:  iλ =10-3, iµ =0.5 (i=1, 2, 3, ,

9). Based on the inference rules for temporal operations, the MCSS of 
this DFT could be obtained as:

7 8
0 0

1 2 3 4 4 3 5 6 7 9 8 8 7 9+dft e eMCSS e e e e e e e e e e e e e e= + + → → + + → → + → →
 

(20)

where the hot spare gate (CUP) was logically equivalent to a static 
logic AND gate. Hence, its FLE (e3 ⋅ e4) could be expanded to (e3→e4)
∪ (e4→e3) in the simulation process. In the same way, the AND gate 
(MOTOR) with input event e5 and e6 was expanded to (e5→e6)∪
(e6→e5). The input event e9 was a repeated event and was contained in 
two different cut sequences, 

7
0

7 9 8  ee e e→ →  and 
8
0

8 7 9 ee e e→ → .

In our study, reliability indices such as availability and the com-
ponents’ importance were evaluated by the proposed MCSS-based 
Monte Carlo numerical simulation method. To show the reasonabil-
ity of the proposed methodology, the derived calculation results were 
compared with those obtained from the Markov chain state space-
based approaches. All computations were implemented on a portable 
computer with an Intel (R) Core (TM) i5-4200M 2.5 GHz CPU and 
MATLAB programming platform.

4.2. Results and Discussions
We set the simulation number N as 10,000 rounds. The unavail-

ability results at different mission times calculated by the proposed 
MCSS-based Monte Carlo numerical simulation methodology are 
shown in Table 2, which were compared with those obtained by the 
Markov chain state space-based methods. In addition, the compo-

Fig. 5. Procedure for implementing the proposed numerical simulation meth-
odology
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nents’ failure criticality importance index (IFC) was also calculated as 
shown in Fig. 7.

As observed in Table 2, the results calculated by our proposed 
methodology agreed with those obtained by the Markov chain state 
space-based methods, which demonstrated the effectiveness of our 
proposed methodology. Through applying the proposed methods, the 
components’ failure criticality importance indices (IFC) were also de-

rived. As seen in the Fig. 7, e1 and e2 had almost 
the same IFC, which was higher than those of 
the others and ranked as 1. The values of e3, e4, 
e5 and e6 had the second highest IFC and were 
ranked as 2. The remaining components (e7, e8 
and e9) were ranked as 3. In addition, when ap-
plying the pure Markov chain based methods, 
272 states and 758 transitions were generated, 
and building the Markov Chain model manu-
ally would have cost approximately 3.5 hours. 
However, through applying the proposed meth-
odology, the number of simulated minimal cut 
sequences was only 8, and the results could be 
provided in 3 ~ 4 seconds. Therefore, our pro-
posed methodology was more effective and ef-
ficient than the Markov chain state space-based 
method.

To demonstrate the applicability of the pro-
posed method for nonexponent distributions, we 
also assumed that the time-to-failure of compo-
nents A, B, and C followed lognormal distribu-
tions, and their failure parameters were: mean 
μA,B,C=100 and variances Aσ  =25, Bσ =30, 

Cσ =35. The unavailability results at different 
mission times calculated by the proposed MC-
SS-based Monte Carlo numerical simulation 
methodology are shown in Table 3 (simulation 
number N=10,000). However for this case, the 
Markov chain state space model was unavail-
able because the time-to-failure of some com-
ponents did not follow exponent distributions.

5. Conclusions and future work
In our study, an MCSS-based Monte Carlo 

numerical simulation methodology was pro-
posed for analyzing a repairable DFT. The 
main simulation ideas, procedures and statis-
tical formulas for reliability indices were also 
developed. To illustrate reasonability and ap-
plicability of the proposed methods, we used a 
case study. With less computing time (3 ~ 4s), 
the results calculated by the proposed methods 
and Markov chain state space methods are well 
matched, which can demonstrate that the pro-
posed method was straightforward and simple 
for analyzing a repairable DFT. In addition, the 
proposed methods can give more reliability in-
dices than those provided by Markov chain state 
space-based methods, such as components’ im-
portance indices. Especially for a large-scale 
repairable DFT where some components have 
nonexponent time-to-failure distributions, the 
proposed methodology is also applicable and 
promising for the future.

However, the proposed MCSS-based Monte 
Carlo numerical simulation methodology is 
only suitable for repairable DFTs with time-
dependent failure events, and is not applicable 
for demand failure events whose occurrence 
probabilities are independent of time. This can 
be viewed as a disadvantage. In the future, we 

will focus on solving repairable DFTs with demand failure behaviors. 
Computer code development for MCSS-based Monte Carlo numeri-
cal simulation is also part of our ongoing work.

Table 2. Unavailability results (N=10,000)

Mission time 100h 200h 400h 600h 800h 1000h

Proposed method 0.003990 0.004054 0.003998 0.004009 0.003943 0.004018

Markov method 0.003999 0.003999 0.003999 0.003999 0.003999 0.003999

Table 3. Unavailability results with A, B, and C following lognormal distributions (N=10,000)

Mission time 50h 100h 150h 200h 250h 300h

Unavailability 0.002534 0.019018 0.027261 0.029555 0.032073 0.032576

Fig. 6. DFT model of the adapted HCAS

Fig. 7. Components’ failure criticality importance index (IFC)
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